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Abstract: In the paper are presented the differential 
equations systems, describing the continuous effect of energy 
safety indicators changes on economy safety indicators 
changes. The first invariant GL(n,R)-integrals presenting 
explicit connections among mentioned indicators are found for 
some of these systems.      
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1. POLYNOMIAL DIFFERENTIAL SYSTEMS, 
SOLUTIONS AND INTEGRALS 

Consider multi-dimensional polynomial 
differential system written in the tensor form [1]: 
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symmetrical in lower indices where the complete 
convolution hold, A - is a finite set of non-negative 
different integers, ),...,,( 21 nxxxx =  - is the vector of 
phase variables and a  - is the totality of the coefficients 
of right-hand sides of system the (1). All the coefficients 
and variables vary in the field of real numbers R . 
 
Definition 1. Call a solution of the system (1) the system 
of continuous functions  

),(11 tx ϕ=  ),(22 tx ϕ=  …,  )(tx nn ϕ=              (2) 
on independent variable t , defined together with their 
first derivates on some interval from R , such that after 
substitution of them instead nxxx ,...,, 21  in (1) we 
obtain the identity on the whole interval of definition 
with regard to t . 
 
Definition 2. If the function ),( axF  
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and continuous together with its partial derivates in 
some area of phase space of variables nxxx ,...,, 21 , 
after the substitution in it of some solution (2) became a 
constant with regard to t , then they say that equality  

CaxF =),(             (3) 
is the first integral of the system (1). 
 

It is known [2] that holds 
 
Theorem 1.  Any first integral (3) of the system (1) 
satisfies the condition  
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and vice versa, any function ),( axF , satisfying the 
condition (4), is the first integral of the system  (1). 
 

It is showen in [2] that any system (1) has 1−n  
functional-independent first integrals, which compose the 
general integral of the system. 

If the equality (3) from definition 2 we 
have 0=C , than  

0),( =axF      (5) 
is the particular integral of the system (1). Than the 
criteria of existence of particular integral (5) for the 
system (1) can be written with the aid of Λ  from (4) as 
follows 

,)( VFF ⋅=Λ      (6) 
where V is some analytical function. 

2. LIE ALGEBRA OF OPERATORS ADMITTED 
BY THE SYSTEM (1), ITS INVARIANT 
INTEGRALS AND ORBITS 

Definition 3. Call the linear space L  on the field R  
Lie algebra if for any two of its elements YX , the 
operation of commutation is defined ],[ YX , which 
returns the element from L  (commutator of elements 



 

 

YX , )  and satisfies the following axioms: 
1) bilinearity: for any LZYX ∈,,  and R∈βα ,             

],,[],[],[ ZYZXZYX βαβα +=+  
];,[],[],[ ZXYXZYX βαβα +=+  

2) anti-symmetry: for any LYX ∈,  
];,[],[ XYYX −=  

3)  identity of Jacobi: for any LZYX ∈,,  

[ ] [ ] [ ] .0],,[],,[],,[ =++ YXZXZYZYX  
 Call a dimension of Lie algebra the dimension 
of vector space L  and in case of finite dimension r  the 
algebra is denoted by  rL  and is known as finite algebra. 

 Further consider finite Lie algebras rL  with 

basis elements ,,...,, 21 rXXX  which can be written as 
differential operators of the first order on coordinates of 
vector x  and coefficients of system (1) as follows  
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Assume that operators (7) are admitted by system (1), 
i.e., according to [3], their coordinates satisfy the system 
of defining equations 
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made. 
 According to Lie theory it follows that in this 
case operators (7)-(8) generate −r parametrical group of 
transformations rG , admitted by the system (1) and 
which can be written as follows 
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where  ),...,,( 21 rαααα =  is the vector on r  
parameters. 
 The invariants and comitants of system (1) with 
the group rG  for 2≥n  are defined in [1] and [4]. 
 
Definition 4. According to [6] we say that integral (first 
or particular) of the differential system (1) is invariant 
integral of this system with group rG , if it can be given 
with the aid of invariants and comitants of differential 
system with group rG . 
 
 According to [5] call such integrals as invariant 

rG - integrals. 

 Denote by )(aE N  the space of coefficients of 
the system (1), where N  is the dimension of this space. 
Let )(aEa N∈  and any element rGq∈  is given by 
equalities (10), where −α  is vector with r  parameters 
and Nr < . 
 
Definition 5.  Call a −rG orbit of point a  for system 

(1) the set }|)({)( rGqqaaO ∈= . 
 
 It is known from [5-6] that 
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where the matrix 1M  is build on coordinate vectors of 
operators (8) and takes the form 

[ ]( )
θ

η )(...1 21
aM j

jjj k
=  

;,1,...,,,( 21 njjjj k =  ;Ak ∈  ).,1
____

r=θ  

As the ,0,1,...,1,1 −= rrrankM  than 
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3. DIFFERENTIAL SYSTEMS,   CONCERNED 
WITH PROBLEMS OF ENERGY SAFETY AND 
THEIR INVARIANT −),( RnGL INTEGRALS 

Consider  −n dimensional affine differential 
system written in general form as follows 

α
α xaa
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dx jj
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+=          ( nj ,1, =α ).  (12) 

It is shown in [7] that for 5≤n  and 0=α
αa  

this system connects continuous effect of energy safety 
indicators on economy safety indicators. 
 
3.1 Case of system (12) with 2=n  
 The system can be written as follows 
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It is shown in [6] the widest linear group 
admitted by the system (13) is centro-affine group 

),2( RGL . According to [6], the polynomial basis of 
invariants and comitants of this system with regard to 
group ),2( RGL  consists of the next polynomials: 
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 From [6] we obtain that holds  
 
Theorem 2. The system (13) is placed on ),2( RGL -

orbits with the maximal dimensions iff 03 ≠i , where 3i  



 

 

is centro-affine invariant (14).    
 
 Remark that the orbits with the maximal 
dimension reflect the case of  most general place for 
system (13), as they described by the inequality 
( 03 ≠i ). 
 In [6] is given 
  
Theorem 3. With the aid of 3131 , kkii −−  from (14) is 

made the decomposition of the set of ),2( RGL -orbits 

of the maximal dimension ( 03 ≠i ) of the set of 
coefficients and variables for system (13) on five non-
intersecting invariant sets:  
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and on the each set the corresponding first invariant 
),2( RGL - integrals is found for the mentioned system. 

 
Remark 1. For 01 ≠i  the system (13) on ),2( RGL  -  

orbits with maximal dimension 4 ( 03 ≠i ) has particular 

invariant ),2( RGL -integral 
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where 3131 , kkii −−  are taken from (14). 

 
3.2 Case of system (12) with 3=n  
 In [4] is given the functional basis of comitants 
of system (12) with 3=n  with regard to group  

),3( RGL : 
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where the coordinates of vector ),,( 321 uuuu =  vary 

by the low of covariant vectors  [8], and pqrε  is the unit 
three-vector with coordinates 

1213231321312132123 =−==−==−= εεεεεε  and 

)3,1,,(0 == rqppqrε  in other cases. 

 It is shown that for equality 9)(dim =aOR  
holds (maximal dimension of ),3( RGL -orbits for 
system (12) with  3=n ) it is necessary that condition 

04 ≠δ  holds. 
 In [3] is proved 
 
Theorem 4. For 04 ≠δ  and  3=n  the next canonical 
forms and corresponding first ),3( RGL - integrals are 
found for the system (12): 
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Invariant condition: 
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Case II. 
Invariant condition: 
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Case III. 
Invariant condition: 
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Case IV. 
Invariant condition: 
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3.2 Case of system (12) with 4=n  



 

 

 In this case the functional basis of comitants of 
system (12) with 4=n  with regard to the group 

),4( RGL  can be written as follows  
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where the coordinates of vector ),,,( 4321 uuuuu =  

vary by the low of covariant vectors  [8], and pqrsε  is 
the unit four-vector equal to 1 with even permutation of 
different upper indices, and equal to -1 with odd 
permutation of these indices, and  

)4,1,,,(0 == srqppqrsε  in other cases. 

It is shown that for equality 16)(dim =aOR  
holds (maximal dimension of ),4( RGL -orbit for 
system (12) with 4=n ) it is necessary that condition 

05 ≠α  holds. 
 It is proved 
 
Theorem 5. For 05 ≠α  and 4=n  in some cases for 
the system (12) the following canonical forms are found  
and are obtained first ),4( RGL - integrals for the 
system (12): 
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Invariant condition: 
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First invariant ),4( RGL -integrals: 

13443
2
41 22 CF =−+= βαβαβ , 

.333

333

23443432
2
4

3
43

2
4

2
344242

C
F

=++−

−−−−=

ββαβααβα

βαβαββαα
 

 
Case II. 
Invariant condition: 
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First invariant ),4( RGL -integrals: 
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 Case  III. 
Invariant condition: 
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First invariant ),4( RGL -integral: 
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