

ASSESSMENT OF ENERGY SECURITY OF THE REGION

Grigory FEDORCENCO

Transnistrien state university, Tiraspol city

Abstract – There is a new approach to the evaluation of the integral measure estimation of energy safety of Transnistria and valuation of combined integral index dependent of mode of working energetic system with using a generalized utility Harrington-Menchers's function in this paper. It is adduced an example of the construction of such a measure on the real data.

Keywords – generalized utility function, a display method, energy security.

ANALIZA SECURITĂȚII ENERGETICE A REGIUNII

Grigorii FEDORCENCO

Universitatea transnistreană de stat, or Tiraspol

Rezumat – În lucrare sunt examinate rezultatele calculului indicatorilor, care caracterizează securitatea energetică a Transnistriei şi valorile indicelui integral combinat în funcție de regimul de funcționare a sistemului energetic. În acest context a fost utilizată funcția generalizată de utilitate Harrington-Mancer. Este prezentat un exemplu de calcul bazat pe date reale. **Cuvinte cheie** – funcția generalizată de utilitate, metoda de demonstrare, securitatea energetică.

АНАЛИЗ ЭНЕРГЕТИЧЕСКОЙ БЕЗОПАСНОСТИ РЕГИОНА

Г.С. Федорченко

Приднестровский государственный университет, г. Тирасполь

Реферат – В статье рассмотрены результаты расчета индикаторов, характеризующих энергетическую безопасность Приднестровья, и значения комбинированного интегрального показателя в зависимости от режима работы энергосистемы. При этом используется обобщенная функция полезности Харингтона-Менчера. Приведен пример вычислений, основанных на реальных данных.

Ключевые слова – Обобщенная функция полезности, индикаторный метод, энергобезопасность.

ВВЕДЕНИЕ

Для описания состояния энергетической безопасности региона, формируют список величин которые характеризуют состояние (индикаторов), энергетической безопасности региона. Мы получаем набор величин, которые: а) имеют различные единицы б) различную степень влияния на измерения; энергетическую безопасность. Для решения задачи управления энергосистемой желательно свести весь этот массив данных к одному числу - некоторому интегральному показателю. Рассмотрим один из возможных подходов к решению этой задачи на примере энергетической безопасности Приднестровья.

Используем подход, изложенный нами в [2], и данные, взятые нами из [1]. Проанализируем собранные данные, используя метод корреляционных плеяд. Вычислим значения частных показателей функции полезности для различных индикаторов. Результат приведен в таблице 1. Мы получили 4 плеяды, причем одна из них (№ 1) содержит 13 индикаторов, а остальные – по одному индикатору.

Возникает вопрос, как быть с множеством индикаторов, принадлежащих 1-й плеяде. Мы не можем взять один индикатор и рассматривать его как представителя всей плеяды, т.к. значения функции полезности индикаторов, входящих в плеяду № 1, представленные в таблице 1, сильно отличаются друг от друга.

Как видим из таблицы 1, значения функции полезности для членов одной плеяды меняются от крайне низкого значения - 0,001 до максимально возможного значения - 1. Будем использовать, в качестве значения, характеризующего плеяду, средневзвешенное значение частных показателей качества по всем членам плеяды. Значения весов, использованные нами, представлены в соответствующей колонке таблицы 1.

Таблица 1. – Значения функции полезности d_i для индикаторов, принадлежащих 1-й плеяде (данные 2012 г)

Коды	Описание	d_i	Beca αi	
	индикатора	•		
z_1	Потребление	1.00	0.5	
	топлива	1,00	0,5	
	на душу населения			
	Выработка			
Z ₃	электроэнергии	1,00	0,5	
	на душу населения.			
	Выработка		0,5	
\mathbf{z}_4	теплоэнергии	1,00		
	на душу населения.			
	Доля собственных			
	источников		0,9	
z_5	электроэнергии в	1,00		
	покрытии			
	баланса за год.			
	Доля блок-станций в		0.6	
7	общей	0,01		
Z ₇	установленной	0,01	0,6	
	мощности.			
_	Уровень износа	0.01	0.6	
Z 9	подстанций.	0,01	0,6	
	Выбросы диоксида	1.00	0.4	
z_{10}	углерода.	1,00	0,4	
	Потребление			
z_{11}	электроэнергии	0,62	0,6	
	на душу населения.			
	Потребление		0.0	
l _	централизованной	0.50		
z_{12}	теплоэнергии на	0,58	0,8	
	душу населения.			
Z ₁₄	Энергоемкость ВВП.	0,010	0,5	
	Электроемкость			
Z ₁₅	ВВП.	0,01	0,5	
Z ₆	Доля ГЭС в общей			
	потребляемой	0,86	0,8	
	мощности.	.,		
	Доля мощности			
z_8	наиболее	0.04	0.5	
	крупной	0,01	0,6	
	электростанции.			
Z ₁ *	Средневзвешенное			
	значение	0,56		
	<i>di</i> по плеяде № 1	0,50		
L	ил по племде м≥ т	l		

При формировании интегрального показателя используем функцию Харрингтона-Менчера [2]. Для вычисления значения обобщенной функции полезности воспользуемся формулой 1.

$$D = \sqrt[\beta_1 + \beta_2 + \beta_{16} + \beta_{13}]{Z_1^{*\beta_1} \cdot Z_2^{\beta_2} \cdot Z_{16}^{\beta_{16}} \cdot Z_{13}^{\beta_{13}}}$$
(1)

Данные для вычисления обобщенной функции полезности сведены в таблицу 2.

Таблица 2. – Данные, полученные при вычислении обобщенной функции полезности

Ко Описание е лидикатора я д а	d_i ве са пл ея д β_i
--------------------------------	-------------------------------

Z_1^*	Средневзвешенно е значение d_1 * по плеяде № 1	1	0, 5 6	0,6
z_2	Доля доминирующего топлива в суммарном количестве топлива.	2	0, 0 1	0,8
z ₁₆	Инвестиции в энергетику.	3	1, 0 0	0,5
Z ₁₃	Соотношение стоимости энергоресурсов и среднедушевого дохода.	4	1, 0 0	0,7

D = 0.21

Полученный нами показатель D назовем комбинированным интегральным показателем.

Значение показателя D говорят о том, насколько хорошо энергосистема решает поставленные перед нею задачи. Очевидно, что энергосистема, находящаяся в различных своих состояниях, будет решать различные задачи, что в нашем случае будет проявляться в иных значениях весов, подставляемых в формулу 1.

Вычисления, результаты которых приведены в таблице 2, выполнены для нормального режима работы энергосистемы. Представляет интерес повторить наши вычисления для других состояний энергосистемы. Пример подобных расчетов приведен в таблице 3. Как мы видим, веса индикаторов, и как следствие, интегральная оценка состояния энергосистемы, очень сильно зависят от режима работы энергосистемы. Работа в данном направлении, по нашему мнению должна быть продолжена.

Таблица 3. Значения комбинированного интегрального показателя D в зависимости от режима работы энергосистемы.

Режим работы энергосистемы	Значения весовых коэффициентов β_i для различных плеяд			D	
•	Z_1^*	\mathbf{z}_2	z_{16}	z_{13}	
Нормальное	0,6	0,1	0,5	0,9	0,67
Предкризисное начальное	0,6	0,2	0,45	0,75	0,52
Предкризисное развивающееся	0,6	0,3	0,4	0,7	0,41
Предкризисное критическое	0,6	0,4	0,4	0,65	0,34
Кризисное нестабильное	0,6	0,5	0,35	0,6	0,27
Кризисное угрожающее	0,6	0,7	0,3	0,55	0,19
Кризисное критическое	0,6	0,8	0,3	0,5	0,16
Кризисное чрезвычайное	0,6	0,9	0,25	0,4	0,12

СПИСОК ЛИТЕРАТУРЫ

1. С.Г. Федорченко, Г.С. Федорченко, А.И. Туртурика. Интегральная оценка энергетической безопасности ПМР//Экономика Приднестровья, 2014, N11-12, с. 41-43.