

ВОЗМОЖНЫЕ ВАРИАНТЫ ФУНКЦИОНИРОВАНИЯ ГЕНЕРИРУЮЩИХ ИСТОЧНИКОВ НА ТЕРРИТОРИИ МОЛДОВЫ

Калинин Л.П., Зайцев Д.А., Тыршу М.С., Голуб И.В.

Институт Энергетики Академии Наук Молдовы

Реферат — В статье представлены результаты исследования установившихся режимов при реализации различных вариантов функционирования генерирующих источников (КТЭЦ-1, КТЭЦ-2, МГРЭС) в рамках некоторых перспективных сценариев развития молдавской энергосистемы.

Keywords: генерирующие источники, потери активной мощности, синхронная работа энергосистем, расчетная модель.

VARIANTE POSIBILE DE FUNCȚIONARE A SURSELOR DE GENERARE DE PE TERITORIUL REPUBLICII MOLDOVA

Calinin L., Zaiţev D., Tîrşu M., Golub I.

Institutul de Energetică al Academiei de Științe a Moldovei

Rezumat – În articol sunt prezentate rezultatele cercetărilor regimurilor stabilite la realizarea diferitor variante de funcționare a surselor generatoare (CET-1, CET-2, CERS din Moldova)din cadrul unor scenarii de dezvoltare în perspectivă a sistemului electroenergetic al Moldovei.

Cuvinte cheie: surse de generare, pierderi de putere activă, funcționare sincronă a sistemelor energetice, model de calcul.

POSSIBLE VARIANTS OF OPERATION OF GENERATING POWER SOURCES IN MOLDOVA

Kalinin L., Zaitsev D., Tirsu M., Golub I.

Institute of Power Engineering of Academy of Sciences of Moldova

Abstract – The paper present results of steady-state modes of Moldavian transmission network in different scenarios for generation units accommodation.

Keywords: power system, transmission network, generator units, steady-state mode.

1. ВВЕДЕНИЕ

Производство электрической энергии в Молдове за 9 2011г. составило 568,7 млн кВт/ч, сократившись на 2,6% в сравнении с аналогичным периодом 2010г. Один из основных производителей электроэнергии в Молдовы - КТЭЦ-2 выработала в январе-сентябре 2011г. более 431,1 млн кВт/ч электроэнергии, что на 1,7% меньше, чем за 9 месяцев 2010г. Объем электрической энергии, произведенной на КТЭЦ-1, сократился на 7,9% - до 50,6 млн кВт/ч [1]. Такая тенденция наблюдается все последние годы, что приводит к снижению выработки электрической и тепловой энергии на КТЭЦ-1 и КТЭЦ-2 и к менее эффективному использованию в Республике Молдова топливных ресурсов, объемы потребления которых, в последние годы снижается.

В связи с этим в последнее время все чаще поднимается вопрос о возможном закрытии КТЭЦ-1 и КТЭЦ-2, как нерентабельных в связи с большим расходом топлива на производство электроэнергии, и как следствие невозможности работы в оптимальном режиме из-за недостаточной внешней тепловой нагрузки, и закупки недостающей электроэнергии из

внешних источников (в Украине, на МГРЭС, в Румынии). Кроме того, предлагается даже вариант отказа от закупок на МГРЭС.

- В рамках исследования возможных вариантов функционирования генерирующих источников на территории Молдовы было рассмотрено и проанализировано несколько вариантов:
- 1. Базовый режим 1 синхронная работа с Украиной и отключение КТЭЦ1 и КТЭЦ2,
- 2. Базовый режим 1, с отключением КТЭЦ-1 и КТЭЦ-2 и отключением от МГРЭС (на МГРЭС отключался один генератор мощностью 200МВт, симулируя отказ от закупок электроэнергии в Приднестровье),
- 3. Базовый режим 2 синхронная работа с Румынией и отключение КТЭЦ-1 и КТЭЦ-2,
- 4. Базовый режим 2, с отключением КТЭЦ-1 и КТЭЦ-2 и отключением от МГРЭС.

Таким образом все расчетные модели строились на основе двух базовых режимов. Детально характеристики базового режима 1 и базового режима 2 приведены соответственно в [1] и [2].

2. РАСЧЕТНЫЕ МОДЕЛИ ПРИ СИХРОННОЙ РАБОТЕ ЭНЕРГОСИСТЕМ МОЛДОВЫ И УКРАИНЫ

В условиях синхронной работы энергосистемы Молдовы и Украины рассмотрены первые два варианта режима, охарактеризованные в предыдущем пункте. Сравнительный анализ проводился по отношению к показателям базового режима. На Рис. 1 приведена гистограмма отображающая уровень генерации активной мощности и величин соответствующих внешних активных перетоков в различных вариантах режима работы сети.

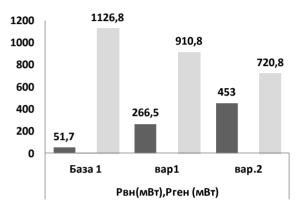


Рис.1. Зависимости Рген, Рвн при различных вариантах режима работы сети

Потокораспределение и основные параметры режима, нанесенные на схему сети, представлены на Рис.2 для режима с отключением КТЭЦ1,2 и на Рис.3 для режима с отключением КТЭЦ1,2 и отключением генератора на МГРЭС.

Таблица 1. Основные параметры нормального режима при синхронной работе с Украиной

жима при сипхроппон расоте с з кранион					
$\Delta P(MBT)$					
База 1	1	2			
35,3	43,8	47,3			
907,8	909,8	915,8			
Рген (МВт)					
1126,8	910,8	720,8			
32417,8	32417,8	32417,8			
Рвн(МВт)					
-51,7	-266,5	-453,0			
921,3	1005,6	999,6			
	База 1 35,3 907,8 1126,8 32417,8	ΔP(MBT) База 1 35,3 43,8 907,8 909,8 Рген (МВт) 1126,8 910,8 32417,8 Рвн(МВт) -51,7 -266,5			

Основные параметры режима (величины потерь активной мощности, показатели по активной генерации и внешним перетокам) приведены для базового и анализируемых вариантов в Таблице 1 для молдавской и украинской энергосистем. Из анализа информации, представленной на Рис.1 и в Таблице 1 видно, что при отключении КТЭЦ1,2 соответственно возрастает внешний переток мощности из Украины в

Молдову с 51.7МВт до 266.5МВт, а при отказе от закупок на МГРЭС до 453.0МВт.

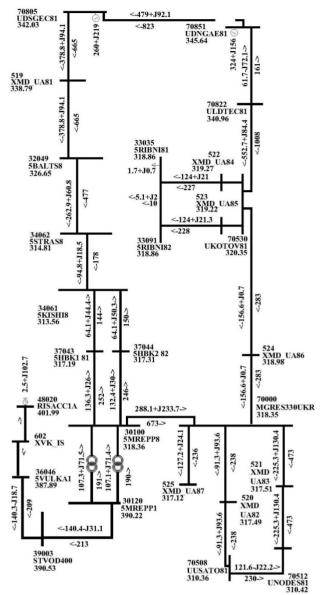


Рис.2. Параметры режима для режима с отключением КТЭЦ1 и КТЭЦ2 при синхронной работе с Украиной

Этот дополнительный переток приводит к повышению уровня активных потерь в энергосистеме Украины с 907.8МВт до 909.8МВт (на 2МВт) в первом варианте, и до 915.8МВт (на 8МВт) во втором. Кроме того существенно возрастают потери в молдавской энергосистеме с 35.3МВт до 43.8МВт (на 24.1%) в первом расчетном варианте и до 47.3МВт (на 34.0%) во втором.

Структура активных потерь мощности по классам напряжения 110-400кВ для республиканской энергосистемы приведена в Таблице 2 для базового и двух рассматриваемых вариантов.

Из информации, представленной в Таблице 2 видно, что при отключении генерирующих мощностей на территории Молдовы потери существенно возрастают в транспортных сетях 330кВ и в значительной степени в сетях 110кВ. Этот эффект наглядно проиллюстрирован на Рис.4.

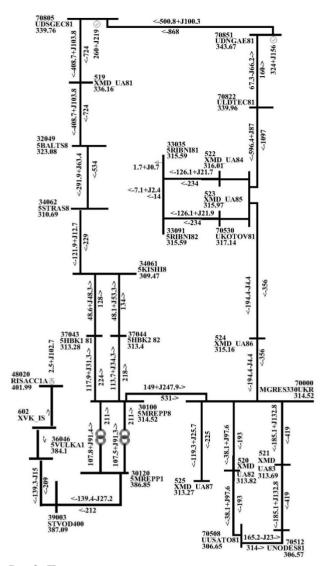
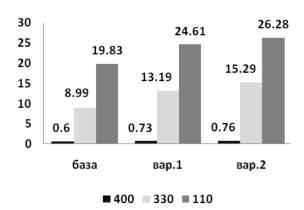



Рис.3. Параметры режима для режима с отключением КТЭЦ1, КТЭЦ2 и генератора на МГРЭС при синхронной работе с Украиной

Таблица 2. Структура активных потерь мощности по классам напряжения при синхронной работе с Украиной

	База 1				
Uн					
	∆Рнагр	ΔРлэп	ΔРтр	ΔPxx	
Молдова	31,86	28,23	3,63	3,47	
400	0,6	0,37	0,23	0,75	
330	8,99	8,06	0,93	2,3	
110	19,83	19,79	0,04	0,43	
	Вариант 1				
Молдова	40,55	36,7	3,86	3,29	
400	0,73	0,45	0,28	0,73	
330	13,19	11,65	1,55	2,18	
110	24,61	24,59	0,01	0,39	
	Вариант 2				
Молдова	44,08	40,45	3,62	3,22	
400	0,76	0,46	0,3	0,71	
330	15,29	13,73	1,56	2,13	
110	26,28	26,26	0,01	0,38	

ис.4. Зависимость потерь в сетях высокого напряжения от мощности генерации в Молдове (при синхронной работе с Украиной)

P

Отсутствие роста потерь в сети 400кВ объясняется ее относительной обособленностью при работе на островную нагрузку на территории Румынии. Сети же 330кВ и 110кВ являются системообразующими и питающими для энергосистемы Молдовы, поэтому на них в первую очередь ложится нагрузка при отключении генерирующих мощностей в Молдове.

РАСЧЕТНЫЕ МОДЕЛИ ПРИ СИНХРОННОЙ РАБОТЕ ЭНЕРГОСИСТЕМ МОЛДОВЫ И ENTSO-E

Рассмотренные в настоящем разделе расчетные варианты строились на основе базового режима 2, т.е в случае присоединения Молдовы к ENTSO-E без Украины. Все анализируемые показатели режима исследуемых вариантов также сравнивались с характеристиками базового режима. Основные параметры режима, нанесенные на схему сети, представлены на Рис.6 для режима с отключением КТЭЦ1,2 и на Рис.7 для режима с отключением КТЭЦ1,2 и отключением от МГРЭС.

Величины потерь активной мощности, параметры по активной генерации и перетокам приведены для базового и анализируемых вариантов в Таблице 3 для молдавской и смежных энергосистем.

 Таблица
 3. Основные параметры нормального

 режима при синхронной работе с ENTSO-E

кима при синхронной работе с ЕМ 150-Е				
Район	ΔР(МВт)			
гаион	База 2	1	2	
Молдова	33,9	44,7	58,0	
Румыния	281,1	279,7	304,6	
	Рген (МВт)			
Молдова	1126,8	910,8	66,4	
Румыния	10266,8	10266,8	10266,8	
	Рвн(МВт)			
Молдова	-58,6	-267,3	-1096,0	
Румыния	569,2	570,6	545,8	

Из анализа информации, представленной в Таблице 3

и на Рис.5 видно, что при отключении КТЭЦ1,2 соответственно возрастает внешний переток мощности из Румынии в Молдову с 58.6МВт до 267.3МВт, а при отключении от МГРЭС до 1096.0МВт.

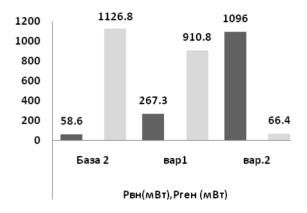


Рис.5. Зависимости Рген при различных вариантах режима работы сети

В первом варианте потери активной мощности в румынской энергосистеме практически не изменяются, в то время как в энергосистеме Молдовы возрастают с 33.9МВт до 44.7МВт (на 31.8%).

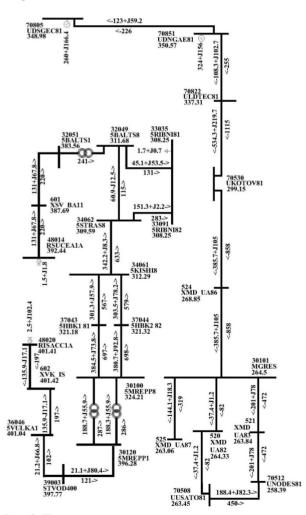


Рис.6. Параметры режима для режима с отключением КТЭЦ1 и КТЭЦ2 при синхронной работе с ENTSO-E

Что касается варианта с отключением от МГРЭС, то активные потери в румынской энергосистеме возрастают до величины 304,6мВт (на 8.3%). В энергосистеме Молдовы активные потери повышаются до величины 58мВт (на 71.1%). Следует также отметить, что режим с отключением от МГРЭС может существовать только при включении в южной части республики источника реактивной мощности из-за недопустимого снижения напряжения (в данном случае ИРМ с Q=j400 включен на шинах МГРЭС).

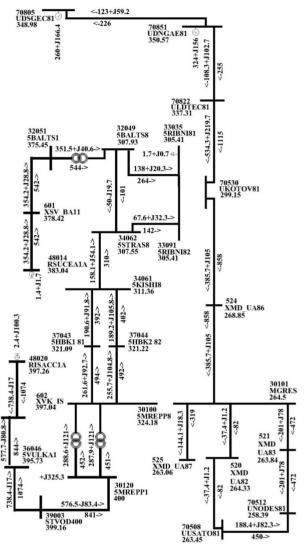
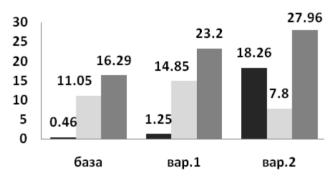


Рис.7. Параметры режима для режима с отключением КТЭЦ1, КТЭЦ2 и генератора на МГРЭС при синхронной работе с ENTSO-E


Структура активных потерь по классам напряжения 110-400кВ для республиканской энергосистемы приведена в Таблице 4 для второго базового и двух рассматриваемых вариантов.

Из информации, представленной в Таблице 4 и на Рис.8 видно, что при отключении КТЭЦ1,2 существенно возрастают потери активной мощности в транспортных сетях 400кВ (на 172%), 330кВ (на 34.4%) и в сети 110кВ (на 42.4%).

Таблица 4. Структура активных потерь по 110-400кВ классам напряжения для

республиканской энергосистемы

	T	•			
Uн	База 2				
UH	∆Рнагр	ΔРлэп	ΔРтр	ΔPxx	
Молдова	33,9	30,2	26,75	3,45	
400	0,46	0,29	0,18	1	
330	11,05	10,22	0,84	2,3	
110	16,29	16,25	0,04	0,41	
Uн	Вариант 1				
	ΔРнагр	ΔРлэп	ΔРтр	ΔPxx	
Молдова	41,22	37,37	3,85	3,45	
400	1,25	0,87	0,38	0,97	
330	14,85	13,31	1,54	2,12	
110	23,2	23,19	0,02	0,36	
Uн	Вариант 2				
	∆Рнагр	ΔРлэп	ΔРтр	ΔPxx	
Молдова	54,55	51,49	3,06	3,41	
400	18,26	17,2	1,06	0,96	
330	7,8	6,35	1,45	2,1	
110	27,96	27,95	0,02	0,35	

■400 **■**330 **■**110 Зависимость потерь в сетях высокого напряжения от мощности генерации в Молдове (при синхронной работе с Румынией)

При отключении от МГРЭС и переходе на внешнее энергопитание (со стороны ENTSO-E) колоссально возрастает нагрузка на сети 400кВ, и соответственно В них составляют 18.26MB_T. увеличиваются на 3869.5%. Также при реализации этого варианта потери в сети 110кВ возрастают на 11.7МВт или 71.6%, в то время как в сетях 330кВ потери активной мощности несколько снижаются.

ЗАКЛЮЧЕНИЕ

В результате выполненного исследования, можно сделать вывод, что отказ от собственных источников энергоснабжения, находящихся, в данном случае, рядом с центрами нагрузки, ведет к существенному снижению уровня надежности электроснабжения потребителей, резкому возрастанию потерь активной мощности в сетях всех классов напряжения, и к необходимости решать приводит связанные с режимом по напряжению.

ЛИТЕРАТУРА

- Пресс-служба http://www.anre.md
- Л.Калинин, Д.Зайцев. М.Тыршу, И.Голуб, Варианты развития транспортной сети Молдовы при параллельной работе с энергосистемой Украины, Проблемы региональной энергетики 1(18), http://www.ie.asm.md
- [3] Lev Calinin, Dmitrii Zaitsev, Mihai Tirsu, Irina Golub, Scenarios of Moldavian power system development to merge ENTSO-E, 9th World Energy System ConferenceJune 28-30 2012 Suceava, Romania, http://www.agir.ro/buletine/1449.pdf

СВЕДЕНИЯ ОБ АВТОРАХ:

Калинин Лев Павлович 31.07.1934. Окончил Олесский Политехнический Институт (Украина) в 1963 году. В 1982 году защитил диссертацию на степень кандидата технических наук в НЭТИ г. Новосибирск (Россия). Область научных интересов связана с применением FACTS контроллеров в энергосистемах.

Зайцев Дмитрий Александрович 10.04.1963. Кишиневский Политехнический Институт (Молдова) в 1985 году. Зашитил диссертацию на степень кандидата технических наук в 2000 году в Институте Энергетики АН РМ. Научные интересы лежат в области режимов исследования энергосистем, содержащих гибкие межсистемные связи. Является «Лабораторией заведующим Энергетического Оборудования и Силовой Электроники».

Тыршу Михаил Степанович 27.02.1972. Окончил Технический университет Молдовы в 1994 году. По специальности «Автоматизация и управление техническими системами». В 2003 году защитил диссертацию на степень кандидата технических наук. Является заместителем директора Института Энергетики Акалемии Наук Молдовы. Основные исследования проводит в области управления сетями, транспортными диагностики высоковольтного оборудования, силовой электроники и др.

Голуб Ирина Владимировна 04.10.1967. Окончила Кишиневский Политехнический Институт (Молдова) в 1989 году. Область научных интересов связана с исследованиями режимов энергосистемы.