

ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ В ОМСКОЙ ОБЛАСТИ

СУТЯГИНСКИЙ М.А., АГЕЕВ А.А., ПОТАПОВ Ю.А., ЮША В.Л.

НП «Центр инноваций», г. Омск; Омский государственный технический университет

Аннотация. В докладе рассмотрены вопросы экономически целесообразного использования возобновляемых источников энергии лесной и сельскохозяйственных отраслей при кластерном подходе организации производства в Омской области. Представлены технологические цепочки комплексной переработки отходов растительного сырья для нужд нефтехимического, лесоперерабатывающего, кремниевого и агропромышленного комплексов на основе энергосберегающих технологий.

Ключевые слова: энергоресурсосбережение, кластер, органический углерод, пиролиз

ENERGY-SAVING TECHNOLOGIES AND RENEWABLE ENERGY SOURCES IN OMSK REGION

SUTYAGINSKY Mikchail, AGEEV Anatoliy, POTAPOV Yuriy, YUSHA Vladimir

NP «Center of Innovations», Omsk; Omsk State Technical University

Abstract. In the report questions of economically reasonable use of renewable energy resources in wood and agricultural industries in case of a cluster approach to organization of production in the Omsk region are considered. Technological value chains of complex vegetative resources wastes processing for petrochemical, timber-processing, silicon and agroindustrial complexes needs on the basis of energy-saving technologies are provided.

Keywords: energy-and-sources saving, cluster, organic carbon, pyrolysis.

TEHNOLOGIILE DE CONSERVARE A ENERGIEI ELECTRICE ȘI SURSE REGENERABILE DE ENERGIE ÎN REGIUNEA OMSK

SUTIAGHINSKI Mihail, AGHEEV Anatolii, POTAPOV Yurii, YUŞA Vladimir

NP «Centrul de Inovare», Universitatea Tehnică din Omsk

Rezumat. În lucrare se examinează utilizarea surselor de energie regenerabile viabile economic de cherestea și a industriilor agricole, în abordarea de grup, organizarea producției în regiunea Omsk. Sunt prezentate circuitele tehnologice de prelucrare complexă a deșeurilor de material vegetal pentru nevoile complexelor de petrochimie, lemn, siliciu și sectoarele agricole în baza de economisire a energiei.

Cuvinte cheie: economisirea resurselor de energie, dispersie, carbon organic, piroliz

Омская область расположена на юге Западно-Сибирской равнины, входит в Сибирский федеральный округ РФ, граничит на западе и севере с Тюменской областью, на востоке — с Томской и Новосибирской областями, на юге — с Республикой Казахстан.

Площадь территории региона — 141,1 тыс. кв. км (0,8 % территории Российской Федерации), из которых 47,6 % — сельскохозяйственные угодья, 33,1 % — леса, 16,4 % — водные объекты, 2,9 % — другие земли.

Основными природными ресурсами Омской области являются земля, лес, растительный и животный мир, минеральные и органические запасы.

Разведаны и эксплуатируются месторождения нефти, природного газа, торфа, сапропеля, формовочных глин и других полезных ископаемых.

Омская область имеет диверсифицированную и высокотехнологичную экономику, включающую практически все отрасли промышленного и сельскохозяйственного производства.

Почвенные ресурсы позволили вывести Омскую область на уровень высокоразвитого сельскохозяйственного региона, обладающего одним из крупнейших на востоке страны агропромышленных комплексов. Ведущими отраслями хозяйства являются: растениеводство (основные виды пшеница, рожь, продукции: ячмень, свиноводство, птицеводство, молочно-мясное животноводство. Омская область входит в первую десятку крупнейших производителей зерна, мяса и молока в России.

Природно-ресурсный потенциал обусловил структуру промышленно-производственного комплекса, характеризующегося развитием наукоемких технологий традиционных для региона экономических сферах, таких как: нефтехимия, нефтепереработка, машиностроение приборостроение для нужд военно-промышленного комплекса, в которых был достигнут уровень лучших технологий. В сфере переработки сосредоточено более 26% региональных основных фондов, занято около 21% работающего населения области.

Лесосырьевой потенциал Омской области обеспечивает сырьём возобновляемыми И источниками энергии (ВИЭ) предприятия лесной и деревообрабатывающей промышленности. Ежегодная расчетная лесосека на территории Омской области установлена в объеме 13863 тыс. куб. м. При этом по рубкам спелых и перестойных насаждений 12 381,0 тыс. куб. м ликвидной древесины, в том числе по мягколиственному хозяйству - 11 383,8 тыс. куб. м (91,9 %), по хвойному хозяйству – 997,6 тыс. куб. м (8,1%). Следует особо отметить, что основная масса эксплуатационного лесного фонда находится в северных, экологически чистых, районах области со слабо развитой транспортной и энергетической инфраструктурой. Это и обусловило тот факт, что реальный объём лесозаготовок в Омской области на протяжении последних трех лет не превышают 2 млн. куб. м. в год.

На территории области на начало 2012 года насчитывалось 249 организаций, учтенных в составе статистического регистра хозяйствующих субъектов по виду экономической деятельности «Заготовка, обработка древесины и производство изделий из дерева», 68 их них имеют собственную заготовительную базу и только 5 предприятий заготавливали около 100 тыс. м3 древесины в год, а остальные – не более чем по 20 тыс. м3 /год.

В последнее время с мест заготовки предприятиями не более 60% превесного сырья. вывозилось Низкосортную порубочные остатки, древесину, сухостои другие отходы биомассы преимущественно сжигали или оставляли в лесу для естественного перегнивания. Это не только наносило непоправимый ущерб экологии и климату, повышало пожароопасность, приводило к захламленности и деградации лесов, но и значительно рентабельность лесозаготовительных деревоперерабатывающих предприятий, тормозило развитие лесной отрасли в регионе.

Широкомасштабная компания газификации северных районов Омской области, в которых практически все энергоустановки, в том числе и бытовые, переведены на природный, газ привела к снижению потребления низкосортной древесины и отходов заготовки леса населением и коммунальной сферой.

Производство брикетированного и пеллетного топлива из неделовой древесины и отходов переработки малыми предприятиями лесной отрасли экономически не выгодно, из-за необходимости

приобретения заготовителями (или предпринимателями) за счет собственных средств дорогостоящего специализированного оборудования измельчения сушки, прессования сырья и высокой стоимости транспортных расходов для поставки этой продукции в другие регионы, где она востребована.

В то же время рациональное использованием имеющихся в регионе природных ресурсов, основными из которых являются леса, невозможно без мероприятий по глубокой переработке отходов лесной отрасли, которые рассматриваются с точки зрения получения ВИЭ. Особое внимание этому уделено в долгосрочной целевой программе Омской области «Развитие лесопромышленного комплекса Омской области на 2013-2017 годы», которая стимулирует создание эффективных производств по лесозаготовкам и деревопереработке.

Используя новую экономическую платформу кластерного объединения предприятий, по инициативе Минэкономразвития РФ некоммерческим партнерством «Центр инноваций и трансферта технологий» на базе ЗАО «ГК «Титан» была разработана программа развития инновационного территориального кластера «Омский промышленноаграрный инновационный кластер «ПАРК»» [1 - 3].

Бизнес-идея программы заключается в объединении и создании нескольких взаимосвязанных между собой предприятий, занимающихся глубокой безотходной переработкой сырья в продукты с высокой добавленной стоимостью.

В рамках программы "ПАРК" было принято решение о создании в кластере четырех комплексов предприятий взаимодополняющих и обеспечивающих друг друга сырьем и продукцией:

АГРОПРОМЫШЛЕННЫЙ — комплекс глубокой переработки зерновых культур и взаимосвязанные с ним производства, где предприятия (включая животноводческие) обеспечивают друг друга сырьем и продукцией.

НЕФТЕХИМИЧЕСКИЙ – комплекс нефтехимических производств и высокотехнологичных предприятий с применением «зеленых» технологий, внедрением программ в области газохимии и глубокой переработки углеводородного сырья.

КРЕМНИЕВЫЙ – цепочка кремниевых производств, выпускающих сырье для солнечной энергетики, микроэлектроники и сверхточной оптики.

ЛЕСОПРОМЫШЛЕННЫЙ – комплекс по глубокой переработке древесины (в том числе неделовой), позволяющий организовать рациональное лесопользование и наладить производство широкого ассортимента ценных продуктов, включая композитные материалы.

С учетом территориальных, инфраструктурных и экономических предпосылок, учитывая естественные преимущества Омской области, социально-экономические условия, действующие кооперационные связи и специализацию производств, в Омском промышленно-аграрном кластере сложились и организационно – правовым способом

оформлены технологические цепочки, объединяющие все предприятия внутри кластера.

Структурная схема промышленно-аграрного инновационного кластера "ПАРК" представлена на рис.1. На схеме наглядно представлено движение сырьевых продуктов и взаимодействие предприятий четырех перерабатывающих комплексов в процессе создания конечных продуктов потребления.

В этой инфраструктурно-логистической модели неразрывно связанных технологических цепочек взаимодействия производств различных отраслей промышленности лесной сектор экономики выступает как один из важнейших компонентов, создающий не только традиционные товары народного потребления, но и производящий энергетические сырьевые продукты для инновационных высокотехнологичных

производств, создающих востребованную продукцию с высокой добавленной стоимостью.

очередь значительно свою рентабельность предприятий лесопромышленного комплекса и, как следствие, приводит к улучшению жизненного уровня его работников и созданию новых квалифицированных рабочих мест. Отходы лесопромышленного комплекса практически полностью перерабатываются в энергетически ценные продукты для нужд кремниевого, агропромышленного и нефтехимического комплексов.

Так, например, из крупной щепы, а также древесных и древесноугольных брикетов с наполнителями изготавливается органический углерод — высокореакционный восстановитель для производства металлургического кремния высокой чистоты.

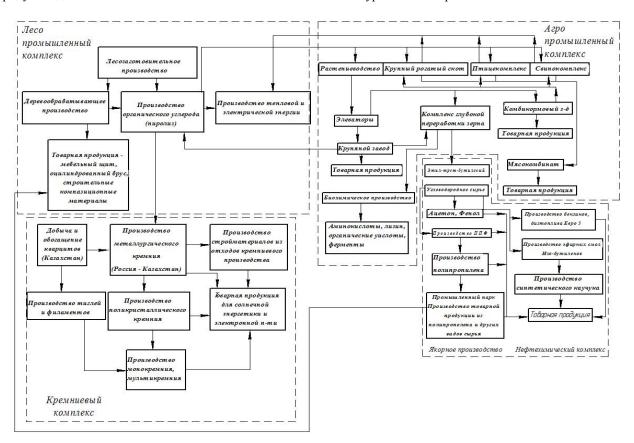


Рис. 1 Перспективная структурная схема Омского промышленно-аграрного инновационного кластера «ПАРК»

Образующаяся при этом производстве угольная крупка (мелкая фракция) поставляется на предприятия агропромышленного комплекса как добавка в подкормку птиц и поросят в начальных стадиях откорма, а также для внесения в почву выращивании картофеля, корнеплодов и некоторых пропашных культур. Кроме этого, часть древесных отходов используется В производстве композиционных материалов на основе полипропилена продукта нефтехимического комплекса.

В условиях производства предприятий, входящих в программу ПАРК сформирована логистическая схема потребления органического углерода в объемах до 30 тыс. тонн в год. В ближайшие три года, в связи с

введением в эксплуатацию строящихся объектов кластера, объемы потребления возрастут до 100 тыс. тонн ежегодно. Для получения такого количества органического углерода необходимо переработать не менее 800 тыс. м³ древесного сырья.

Используя передовой опыт создания современного углевыжигательного оборудования, пиролизных установок нефтехимических производств, а также проведенные НИОКР, в проектном институте ЗАО «Титан» разработаны установки органического углерода блочно модульной конструкции, легко адаптируемые под конкретного имеющихся объемов заказчика в зависимости от перерабатываемого сырья И имеюшие производительность от 500 до 2000 тонн/год по

конечному продукту. В состав установок входят не только приборы регистрации режимных параметров, но и элементы автоматизированного управления, человеческий которые исключают фактор позволяют получать органический углерод высокого Учитывая, что при производстве качества. органического углерода образуется существенный положительный баланс по теплу, в установках предусмотрено его использование отопления социальных и инфраструктурных объектов. Первое опытно-промышленное производство на базе подобной установке ретортного типа введено в эксплуатацию в Тевризском районе Омской области в августе 2011 года. Производительность завода - 4,5 органического тонн/год углерода. эксплуатации установки на открытой площадке позволяет утверждать ee неоспоримых 0 преимуществах по отношению К известным установкам по многим параметрам, в частности по энергоэффективности, производительности, безопасности. Вся продукция завода поставляется на предприятие TOO «Силициум Казахстан» Караганда), являющегося партнером проекта ПАРК, используется В качестве углеродного восстановителя при выплавке металлургического кремния.

В течении 2012- 2014 г.г. планируется ввод в эксплуатацию еще нескольких подобных производств, общей мощностью до 15 тыс. тонн/год органического углерода. Окупаемость таких предприятий, даже при использовании только кредитных ресурсов на проектные работы, приобретение оборудования и его монтажа, строительство административных и производственных зданий и ведения хозяйственной деятельности до выхода завода на проектную мощность, не превышает 3,5 лет.

Ведется НИОКР по созданию универсальной установки непрерывного действия на базе кольцевой печи с вращающимся подом производительностью до 50 тыс. тонн/год для пиролиза различных видов органического сырья.

Исходя из экономического анализа, переработка шелухи зерна в брикетированный органический углерод повышает рентабельность предприятия по отношению к переработке древесных отходов более чем в 1,5 раза при одинаковых объемах переработки сырья. Кроме того, создание рабочих мест на отдаленных территориях всегда имеет не только прямой, но косвенный социальный эффект, способствующий развитию экономики в целом.

В связи со строительством в Омске крупного крупяного завода производительностью до 100 тыс. тонн в год на площадке ЗАО «ГК «Титан» проекту ПАРК ввод в эксплуатацию 2014 г.) исследовался вопрос получения органического лузги овса. Теоретические из экспериментальные работы показали. получения качественного органического углерода из лузги, ее надо вначале брикетировать, а затем подвергнуть пиролизу. При этом на разработанных древесную щепу установках

брикетированный уголь со свойствами, близкими к свойствам древесного угля. Получены обнадеживающие результаты использования такого брикетированного угля не только для бытовых целей, но и в металлургической промышленности.

условиях интенсивного экономического развития территории использование возобновляемых источников энергии становится особенно эффективно и целесообразно при включении этих производств по переработке отходов в другие экономические и технологические процессы, в том числе и крупных производств, в которых получаемые компоненты могут быть потреблены в качестве сырья или технологически промежуточных продуктов. При этом само производство по переработке отходов должно использовать современнейшие энергонезависимые компоненты с масштабируемыми производственными мощностями, адаптируемыми к конкретным территориальным и ресурсным условиям. Получение продуктов глубокой переработки может быть рентабельно не только в рамках общего технологического процесса, но и на мировом рынке.

ЛИТЕРАТУРА

- [1] *Объём лесозаготовки в Омской области* [Электронный ресурс].

 Режим доступа: http://omskportal.ru/ru/government/News/2012/03/05/13309224711 80 (Дата обращения: 09.05.2012).
- [2] Некоммерческое партнёрство «Центр инноваций» [Электронный ресурс]. Режим доступа: http://www.center-inno.ru/ru/partnership/park_ participants (Дата обращения: 19.07.2012).
- [3] 3AO «Группа компаний «Титан» [Электронный ресурс]. Режим доступа: http://www.titan-omsk.ru/park_project.html (Дата обращения: 19.07.2012).

СУТЯГИНСКИЙ Михаил Александрович, президент НК «Центр инноваций и трансферных технологий», г. Москва

АГЕЕВ Анатолий Анатольевич, генеральный директор ЗАО «ГК «Титан»

ПОТАПОВ Юрий Алексеевич, к.т.н., генеральный директор ЛПК «Туя»

 ЮША
 Владимир
 Леонидович,
 д.т.н.,

 заведующий
 кафедрой
 «Холодильная и

 компрессорная
 техника и технология»
 Омского

 государственного технического университета