

ПИНЧ-АНАЛИЗ ПРОЦЕССА ОЧИСТКИ ТЕТРАХЛОРИДА ТИТАНА МЕТОДОМ РЕКТИФИКАЦИИ

Ульев Л.М.¹, Сивак В.В.²

¹Национальный технический университет «Харьковский политехнический институт», ²Запорожский титано-магниевый комбинат

Реферат – Выполнено пинч-проектирование системы рекуперации тепловой энергии для процесса очистки четыреххлористого титана методом ректификации с одновременным получением оксотрихлорида ванадия. Определен энергосберегающий пинч-потенциал процесса и целевые энергетические значения. Синтезирована энерготехнологическая схема интегрированного процесса, срок окупаемости, при внедрении которой будет равен ≈ 2 месяцам.

Ключевые слова: тетрахлорид титана, ректификация, пинч-анализ, реконструкция, энергоэффективность

PINCH-ANALYSIS OF TITANIUM TETRACHLORIDE CLEANING PROCESS WITH RECTIFICATION METHOD

Ulyev Leonid¹, Sivak Vladimir²

¹National Technical University "Kharkov Polytechnic Institute", ²Zaporozhye Titanium and Magnesium Combine

Abstract – The pinch-design of recuperation system for titanium tetrachloride cleaning process with rectification method with simultaneous vanadium oxitrichloride production is presented in this paper. Energy saving potential of process and target energy values were defined. Process integration flowsheet was created. Pay back period for installation for this project is two months. **Keywords:** – titanium tetrachlorid, rectification, pinch-analysis, retrofit, energy efficiency.

ANALIZA PINCI A PROCESULUI DE PURIFICARE A TETRACLORURII DE TITAN PRIN METODA DE RECTIFICARE

Uliev Leonid¹, Sivak Vladimir²

¹Universitatea Națională Tehnică "Institutul politehnic din Harkov", ²Combinatul de titan și magneziu din Zaporozhie

Rezumat – Este efectuată pinci proiectarea sistemului de recuperare a energiei termice pentru procesul de purificare a tetraclorurii de titan prin metoda de rectificare cu obținerea simultană a oxitricloridului de vanadiu. Este determinată pinci potențialul de conservare a energiei procesului și valorile energetice scop. Este sintetizată schema energo-tehnologică a procesului integrat, termenul de recuperare, la introducerea căreia va fi de ≈ 2 luni.

Cuvinte cheie - tetraclorură de titan, rectificare, pinci analiză, renovare, eficiență energetică.

Введение

Титановая промышленность – одна из самых молодых отраслей металлургии. Первый промышленный титан был получен в середине XX века [1, 2], и в настоящее время является четвертым по значению конструкционным материалом.

В конце 80-х годов прошлого века Украина обладала действующими предприятиями всех переделов в производстве титана: горно-обогатительные комбинаты, производства диоксида титана и производство титановой губки, производство титановых слитков, производство проката и штамповки, а также производство порошковой металлургии. С распадом СССР сильно сократилось производство литья, а затем остановилось и производство титановой губки. И только несколько лет назад титановое производство Украины начало возрождаться, хотя экономический кризис последних лет снизил темпы возрождения, что характерно для мирового титанового рынка в целом. Украина обладает большими возможностями для повышения своей роли в мировой титановой промышленности. По некоторым оценкам запасы ильменита и рутила в Украине составляют 30% от зафиксированных мировых запасов [3]. Но для выхода Украины в лидеры титанового рынка необходимо модернизировать все процессы производства титана, сократить издержки производства, и прежде всего, повысить его энергоэффективность.

Наиболее распространенным методом получения титана является магнийтермический метод восстановления титана. В результате восстановления образуется

титановая губка с примесями магния и дихлоридами магния. Титановая губка может быть очищена от магния и хлорида магния, а также низших хлоридов титана гидрометаллургическим способом или вакуумной сепарацией.

Процесс получения четыреххлористого титана имеет четыре стадии: подготовка сырья, хлорирование, конденсация, очистка технического продукта. Наиболее трудноудаляемой примесью данного соединения является окситрихлорид ванадия. VOCl₃ появляется в техническом продукте в результате хлорирующего обжига титансодержащего сырья.

Наибольшее распространение получила очистка технического четыреххлористого титана с помощью ректификации, хотя она значительно осложнена из-за близости температур кипения $TiCl_4$ и $VOCl_3$ — 127 и 136°C соответственно. Важным преимуществом метода ректификации является сохранение молекулярной формы $VOCl_3$, которая является важным звеном в технологии получения ванадия и его соединений. Металлический ванадий и его сплавы представляют интерес для развития таких отраслей, как ракетостроение, атомная промышленность [4].

Главным образом, четыреххлористый титан применяется для получения металлического титана, а также его сплавов. Помимо этого, тетрахлорид титана применяется в производстве титаносодержащей керамики [5], пигментного диоксида титана, как дымообразователь и др.

Производство титановой губки является одним из самых энергоёмких процессов в металлургии. Качество проведения данного процесса и получения необходимых продуктов зависит от чистоты используемого тетрахлорида титана. Таким образом, одной из основных задач в производстве титана является повышение эффективности очистки исходного сырья (TiCl₄) от примесей и увеличение его энергоэффективности. Большой эффективностью при снижении удельного энергопотребления в химико-технологических системах обладают методы интеграции процессов, и, в частности метод пинч-анализа [6, 7], который мы применим к процессу очистки исходного TiCl₄.

Технологическая схема и экстракция данных

Рассмотрим кратко технологическую схему процесса очистки тетрахлорида титана с одновременной концентрацией оксотрихлорида ванадия методом ректификации. Более подробно схема рассмотрена в работе [8].

Технический тетрахлорид титана TiCl₄ (TTT) (поток 1) подогревается в электрическом котле K-0 и поступает в ректификационную колонну PK-1 (рис. 1). TTT на этой стадии освобождается от растворенных газов и легкокипящих примесей, выводящихся с верха колонны. Жидкость после охлаждения поступает в рефлюксную емкость откуда одна часть в виде флегмы подается на орошение верха колонны PK-1, а другая часть, содержащая, в основном, TiCl₄ и легкокипящие примеси, выводится на переработку. Твердые примеси, содержащиеся в TTT, выводятся на утилизацию. Обогрев колонны PK-1 происходит с помощью электрического куба-кипятильника. Очищенный тетрахлорид титана (поток 13) из кубакипятильника поступает на дальнейшую очистку от VOCl₃ в ректификационную колонну PK-2И. Пары из верхней части PK-2И по трубе поступают в кубовую часть PK-2У. Жидкость из кубовой части PK-2У подается на орошение верха PK-2И.

Пары, уходящие из верха РК-2У, поступают в дефлегматор. Одна часть конденсата в виде флегмы подается на орошение верха колонны РК-2У, а другая часть отбирается как ванадиевый поток. Обогрев колонны РК-2И происходит с помощью электричества.

Нижний продукт колонны РК-2И подается на окончательную очистку в куб-кипятильник К-5 дистилляционной колонны ДК. Очистка тетрахлорида титана от остаточного VOCl₃ осуществляется подачей в К-5 химического реагента. В дистилляционной колонне происходит отделение твердых продуктов реакции от TiCl₄ и удаление тяжелокипящих примесей.

Верхний продукт ДК поступает на конденсацию и охлаждение. Затем одна его часть в виде флегмы подается на орошение верха колонны ДК, а другая часть отбирается как очищенный тетрахлорид титана (ОТТ) в сборник готового продукта. Обогрев колонны ДК происходит электричеством в кубе-кипятильнике К-5. Из куба К-5 вместе с TiCl₄ выводятся твердые продукты реакции в куб-кипятильник К-1 для повторной переработки.

Первичный ванадиевый дистиллят из емкости PE-2 подается в ректификационную колонну PK-3. В колонне происходит концентрирование оксотрихлорида ванадия. Пары, выходящие из колонны, конденсируются и охлаждаются в дефлегматоре, жидкость поступает в рефлюксную емкость PE-3. Из нее часть жидкости в качестве флегмы подается на орошение колонны PK-3, а другая часть, вторичный ванадиевый дистиллят, отбирается в емкость E-2. Нижний продукт колонны PK-3, содержащий преимущественно TiCl₄ и VOCl₃, поступает в куб-испаритель K-3, откуда отбирается в колонну PK-2. Обогрев колонны PK-3 осуществляется с помощью куба-испарителя K-3 электричеством.

Состав примесей в ТТТ не является постоянным. Поэтому, для получения VOCl₃ требуемого качества, предусмотрена ректификационная колонна РК-4. В этой колонне происходит окончательная очистка VOCl₃. Пары, выходящие из колонны РК-4 конденсируются и охлаждаются в дефлегматоре, а жидкость поступает в рефлюксную емкость РЕ-4. Из нее часть жидкости в качестве флегмы подается на орошение колонны РК-4, а другая часть, в зависимости от анализа: при высоком содержании легколетучих примесей — направляется на повторную переработку в ректификационную колонну РК-1, а при низком, очищенный VOCl₃ — в емкость Е-3, откуда передается на склад готовой продукции. Обогрев колонны РК-4 осуществляется с помощью куба-испарителя К-4 электричеством.

Рис. 1.– Существующая принципиальная энерготехнологическая схема процесса очистки тетрахлорида титана. Е-1,2 – емкость; С-1,2 – сборник; Н-1-8 – насос; К-0-5 – электрический подогреватель; РК-1,3,4 – ректификационная колонна; ДК – дистилляционная колонна; РК-2И, РК-2У – ректификационные колонны – исчерпывающая и укрепляющая (разрезная колонна); АВО-1-5 – аппарат воздушного охлаждения; РЕ-1-5 – рефлюксная емкость.

В описанном процессе совершенно отсутствует теплоэнергетическая интеграция. Действительно, сеточная диаграмма показывает только утилитные операции нагрева и охлаждения технологических потоков (рис. 2). Анализ технологической схемы и литературы [3–5, 7] позволил определить теплофизические и потоковые данные технологических потоков рассматриваемого процесса и представить их в виде потоковой таблицы, которая является цифровым отображением процесса (Таблица). Детальное описание потоков приведено в работе [8].

№	Название потока	Тип	$^{T_{S},}{}^{\circ}\mathrm{C}$	$T_T, ^{\circ}C$	<i>G</i> , кг/ч	С, кДж/ (кг ^{.°} С)	<i>СР</i> , кВт/°С	<i>r</i> , кДж/кг	Δ <i>Н</i> , кВт	α, κΒτ/ (m ² ·K)
1,1	КЛП, охлаждение пара (5)*	гор	136	134	6600	0,528	0,968		1,94	1
1,2	КЛП, конденсация пара в АВО-1	гор	134	134	6600			190,97	350,12	1
1,3	КЛП, жидкость (8)	гор	134	126	6600	0,804	1,475		11,80	1
2	TiCl ₄ и легкокипящие примеси с установки (7)	гор	126	25	600	0,804	0,134		13,54	1
3,1	Ванадиевый дистиллят-1, охлаждение пара (11 – 18)	гор	140	138	65759	0,553	10,103		20,21	1
3,2	Ванадиевый дистиллят-1, конденсация пара в АВО-2	гор	138	138	65759			190,97	3488,42	1
3,3	Ванадиевый дистиллят-1, жидкость в РЕ-2 (17)	гор	138	136	5921	0,804	1,323		2,65	1
3,4	Ванадиевый дистиллят-1, жидкость из ABO-2 (19)	гор	138	130	59838	0,804	13,372		106,98	1
4,1	Очищенный тетрахлорид титана, охлаждение пара (22)	гор	136	134	17000	0,532	2,513		5,03	1
4,2	Очищенный тетрахлорид титана, конденсация пара в ABO-5	гор	134	134	17000			190,97	901,82	1
4,3	Очищенный тетрахлорид титана, жидкость (24)	гор	134	130	17000	0,804	3,799		15,20	1
5,1	Ванадиевый дистиллят-2, охлаждение пара (33)	гор	127	125	362	0,553	0,056		0,11	1
5,2	Ванадиевый дистиллят-2, конденсация пара в АВО-3	гор	125	125	362			190,97	19,19	1
5,3	Ванадиевый дистиллят-2, жидкость (36)	гор	125	120	362	0,804	0,081		0,40	1
6,1	Очищенный тетрахлорид титана, гот. продукция, охлаждение пара (25)	гор	130	128	11322	0,532	1,674		3,35	1
6,2	Очищенный тетрахлорид титана, гот. продукция, конденсация пара в АВО-6	гор	128	128	11322			190,97	600,60	1
16,3	Очищенный тетрахлорид титана, гот. продукция, жидкость (32)	гор	128	25	11322	0,804	2,530		260,59	1
7,1	Очищенный VOCl3, охлаждение пара (39)	гор	127	125	362	0,553	0,056		0,11	1
7,2	Очищенный VOCl3, конденсация пара в ABO-4	гор	125	125	362			190,97	19,19	1
7,3	Очищенный VOCl3, жидкость в PE-4 (42)	гор	125	120	362	0,804	0,081		0,40	1
8	Очищенный VOCl3, жидкость, гот. продукция (46)	гор	120	25	24	0,804	0,005		0,51	1
9	ТТТ, жидкость (1 – 2)	хол	10	120	12000	0,796	2,654		291,90	1
10	Очищенный ванадиевый дистил- лят.жидкость, подогрев (35)	хол	120	140	24	0,804	0,005		0,11	1
11	Кубовый остаток РК-1 (27)	хол	140	140	17973			190.97	953,41	1
12	Кубовый остаток РК-2 (29)	хол	140	140	83013			190.97	4403.71	1
13	Кубовый остаток РК-3 (38)	хол	140	140	377	L	L	190.97	20.02	1
14	Кубовый остаток РК-4 (44)	хол	140	140	377	L	L	190.97	20.02	1
15	Кубовый остаток ДК (31)	хол	140	140	16944			190,97	898,87	1

Таблица. Потоковые данные технологических потоков, включенных в интеграцию для существующего в настоящее время процесса очистки тетрахлорида титана

*) Номера потоков на схеме (рис. 1).

Рис. 2. – Сеточная диаграмма существующей в настоящее время системы теплообмена процесса очистки тетрахлорида титана. ABO-1–6 – аппарат воздушного охлаждения; К-1-5 – электрический подогреватель куба; T – ракуперативный теплообменный аппарат; CP – потоковые теплоемкости, кВт/К; ΔH – изменение потокового теплосодержания, кВт. Внизу под размещениями теплообменных аппаратов показаны их тепловые нагрузки в кВт.

Определение энергосберегающего потенциала

Используя энерготехнологическую схему процесса и потоковую таблицу, построим на энтальпийнотемпературной плоскости составные кривые горячих и холодных технологических потоков [9, 10] (рис. 3). Проекция составной кривой горячих технологических потоков (горячей составной кривой) на энтальпийную ось показывает величину мощности, которую необходимо отвести от процесса для его выполнения, т.е. значение мощности холодных технологических потоков (холодной составной кривой) на энтальпийную ось показывает величину мощности, которую необходия составной кривой холодных технологических потоков (холодной составной кривой) на энтальпийную ось показывает величину мощности, которую необходимо подвести к процессу для его выполнения — т.е. значение мощности горячих утилит — $Q_{\rm H}$.

Для снижения энергопотребления в химикотехнологической системе (ХТС) необходимо уменьшение минимальной разности температур ΔT_{\min} между теплоносителями в теплообменных аппаратах. Это достигается путем сближения составных кривых вдоль энтальпийной оси. Значение ΔT_{\min} , которое может быть достигнуто в теплообменной сети ХТС, определяется как спецификацией теплообменного оборудования, так и теплофизическими свойствами теплоносителей, которые, в свою очередь, конечно, влияют на выбор спецификации теплообменного оборудования.

Для того чтобы экономически оптимально интегрировать рассматриваемый процесс, нам необходимо выяснить наиболее важные экономически значения,

существенно влияющие на приведенную стоимость выполненного проекта.

Рис. 3 — Составные кривые процесса очистки четыреххлористого титана для процесса без рекуперации тепловой энергии. 1 — составная кривая горячих потоков; 2 — составная кривая холодных потоков; Q_H , Q_C , – потребляемая мощность горячих утилит, холодных утилит и мощность рекуперации. $Q_{H.} \approx 6590$ кВт, $Q_C \approx 5822$ кВт

Стоимость горячих утилит, использованных в процессе, оценим исходя из величины тарифа для промышленных предприяти Украины: 93.46 коп за кВт/час, что ведет к стоимости горячих утилит ~ 980 долл. США за 1 кВт/год.

Стоимость холодных утилит принимаем стоимости природного газа. В настоящее время эта величина составляет значение ~ 520 долл. США за 1000 м³, что дает значения 47 долл. США за 1 кВт год.

Используя цены на теплообменное оборудование, полученные от его производителей, можно еще до выполнения проекта реконструкции оценить необходимые капвложения и срок их окупаемости [11]. Итак, капитальную стоимость одного теплообменного аппарата можно определить выражением [12]:

Кап. стоимость =
$$A_T + B_T (S)^c$$
, (1)

где $A_T = 40000$ долл. США — стоимость установки одного теплообменного аппарата, для пластинчатых теплообменных аппаратов $A_T = 5000$ долл. США; B_T — коэффициент, эквивалентный стоимости 1 м² площади поверхности теплообмена, для кожухотрубчатых теплообменных аппаратов $B_T = 800$, для пластинчатых $B_T = 1000$; S — площадь поверхности теплообмена теплообменного аппарата; c — коэффициент, отражающий нелинейную зависимость стоимости теплообменника от величины его поверхности теплообмена. Для кожухотрубчатых теплообменников c = 0.8.

Будем считать, что для выполнения проекта предприятие берет в банке кредит сроком на 5 лет с 10% кредитной ставкой. Для расчета общей целевой площади поверхности теплообмена будем использовать потоковые данные, приведенные в таблице, к которым добавим характерные значения коэффициентов теплоотдачи технологических потоков.

Расчет дисконтированных величин стоимостей проекта реконструкции [9, 12] процесса очистки тетрахлорида титана позволяет определить значение минимальной разности температур между теплоносителями в будущей системе рекуперации тепловой энергии с учётом существующего теплообменного оборудования, $\Delta T_{\min} \approx 2^{\circ}$ С (рис. 4).

Построим составные кривые для $\Delta T_{\min} = 2^{\circ}$ С (рис. 5). Мы видим, что пинч локализуется на температуре для горячих потоков, раной 140°С, и соответственно для холодных потоков — 138°С. Составные кривые показывают, что горячие утилиты при этом приобретают значение равное $Q_{H\min} = 6296.1$ кВт. Холодные утилиты уменьшаться до величины $Q_{C\min} = 5528.1$ кВт. При этом рекуперация тепловой энергии станет равной $Q_{REC} \approx 293.5$ кВт (рис. 5), которая и является выражением энергосберегающего потенциала.

Рис. 4 — Приведенная (дисконтированная) стоимость проекта реконструкции системы теплообмена процесса очистки тетрахлорида титана. 1 – приведенные капитальные затраты; 2 – годовая стоимость энергии; 3 – общая приведенная стоимость проекта реконструкции

Рис. 5 — Составные кривые системы теплообмена процесса очистки четыреххлористого титана с углубленной тепловой интеграцией. 1 – составная кривая горячих потоков; 2 – составная кривая холодных потоков; $Q_{H\min}$, $Q_{C\min}$, Q_{REC} – целевые значения потребляемой мощности горячих утилит, холодных утилит и мощность рекуперации. $Q_{H\min}$ = 6296.2 кВт, $Q_{C\min}$ = 5528.1 кВт, Q_{REC} ≈ 293.5 кВт, ΔT_{\min} = 2°С

Принимая во внимание стоимость горячих и холодных утилит в процессе очистки тетрахлорида титана, получаем величину возможной годовой прибыли равной ~ 300 тыс. долл США.

Пинч-проектирование.

Применяя методы пинч-проектирования [16] строим сеточную диаграмму теплообменной системы для интегрированного процесса с минимальной разностью температур между теплоносителями, $\Delta T_{min} = 2$ °C. Рекуперации тепловой энергии на составных кривых (рис. 5) на сеточной диаграмме выразится установкой двух рекуперативных теплообменных аппаратов (рис. 6). Мощность теплообменника T2 составляет 3×10-2% от общего значения рекуперации тепловой энергии. Поэтому при синтезе энерготехнологической схемы его можно исключить (рис. 7).

Рис. 6.– Сеточная диаграмма традиционного пинчпроекта системы теплообмена. $Q_{Hmin} = 6296.2$ кВт, $Q_{Cmin} = 5528.1$ кВт, $Q_{REC} \approx 293.5$ кВт, $\Delta T_{min} = 2^{\circ}$ С.

Оценка площади поверхности теплообменного аппарата T1 дает значение ~ 10 м². Минимальная разность температур между теплоносителями на этом теплообменнике равна 20°С, а такая разность температур достижима на кожухотрубчатых аппаратах. Поэтому для оценки капвложений и срока окупаемости предполагаем, что на размещении T1 будет установлен кожухотрубчатый теплообменный аппарат. Стоимость такого аппарата согласно (1) будет равна 48000 долл. США. Следовательно срок окупаемости проекта пинч-интеграции будет равен 2 месяцам.

Рис. 7.– Интегророванная принципиальная энерготехнологическая схема процесса очистки тетрахлорида титана. Е-1,2 – емкость; С-1,2 – сборник; Н-1-8 – насос; К-1-5 – электрический подогреватель куба; РК-1,3,4 – ректификационная колонна; ДК – дистилляционная колонна; РК-2И, РК-2У – ректификационные колонны – исчерпывающая и укрепляющая (разрезная колонна); П – теплообменник; АВО-1-5 – аппарат воздушного охлаждения; РЕ-1-5 – рефлюксная емкость.

Выводы

Определены технологические потоки, которые могут участвовать в теплоэнергетической интеграции процесса очистки четыреххлористого титана методом ректификации с одновременным получением оксотрихлорида ванадия, и найдены их ехнологические параметры. С помощью аппарата составных кривых определен энергосберегающий пинч-потенциал процесса и целевые энергетические значения. В денежном выражении потенциал составляет величину годовой прибыли ~ 300 тыс. долл. США в год. Синтезирована энерготехнологическая схема интегрированного процесса, в которой достигаются целевые значения. Срок окупаемости при внедрении интегророванной энерготехнологической схемы равен ≈ 2 месяца.

Литература

- [1] Байбаков М.К. Производство четыреххлористого титана / М.К. Байбаков, В.Д. Попов, И.М. Чепресов. – М.: Металлургия, 1987. – 128 с.
- [2] Eylon D. Titanium Technology in the USA an Overview / D. Eylon, S.R. Seagle. J. Mater. Sci. Technol. – 2001. – Vol. 17, № 4. – P. 439–443.
- [3] Ремизов Г.О. Перспективы развития титановой промышленности на Украине / Г.О. Ремизов, В.Я. Саенко, Я.В. Белоконь. – Спеціальна металургія: вчора, сьогодні, завтра: Матеріали IX Міжнародної науково-практичної конференції. – К.: НТУУ «КПІ», 2011. – С. 297-307.
- [4] Войтович Б.А. Физико-химические основы разделения продуктов хлорирования титансодержащих материалов / Б.А. Войтович, А.С. Барабанова. – К.: Наукова думка, 1969. – 608 с.
- [5] Крамник В.Ю. Металлургия титана / В.Ю. Крамник. М.: Металлургия, 1968. – 480 с.
- [6] Ульев Л.М. Пинч-диагностика и моделирование процесса разделения широкой фракции легких углеводородов / Л.М. Уль-

ев, Е.В. Поливода – Інтегровані технології та енергозбереження. –2010, –№ 4. – С. 34–40.

- [7] Ульев Л.М. Определение энергосберегающего потенциала для процесса очистки целевого продукта при производстве пигментной двуокиси титана / Л.М. Ульев, А.А. Ковальчук – Вісник НТУ «ХПІ». Збірник наукових праць. Тематичний випуск «Інноваційні дослідження у наукових роботах студентів». – Харків: НТУ «ХПІ» – 2012. – № 10. – С. 106–115.
- [8] Сивак В.В. Экстракция данных для теплоэнергетической интеграции процесса очистки четыреххлористого титана методом ректификации / В.В. Сивак, Л.М. Ульев, А.Н. Сулима. – Інтегровані технології та енергозбереження. –2011, –№ 3. –С. 15–19.
- [9] Основы интеграции тепловых процессов / [Смит Р., Товажнянский Л.Л, Клемеш Й. Капустенко П.А., Ульев Л.М.]. – Х.: ХГПУ. 2000. – 457 с.
- [10] Smith R. Chemical Process Design and Integration / R. Smith Chichester: John Wiley & Sons Ltd. – 2005. – 688 p.
- [11] Альтернативная энергетика и энергосбережение: современное состояние и перспективы / [Капустенко П.А., Кузин А.К., Макаровский Е.Л., Товажнянский Л.Л., Ульев Л.М., Черная Е.Б.]. – Харьков. ООО Издательский дом «Вокруг цвета». 2004.–312
- [12] Nordman R. New process integration methods for heat saving retrofit projects in industrial systems / R. Nordman – Chalmers University of Technology. Goteborg, Sweden. – 2005. – 77 p.

Сведения об авторах

Ульев Леонид Михайлович, д.т.н., проф. кафедра интегрированных технологий, процессов и аппаратов Национального технического университета «Харьковский политехнический институт». Область научных интересов: энергоэффективность химикотехнологических систем, теплопередача, гидродинамика, неизотермическая реология

Сивак Владимир Викторович, руководитель государственного предприятия «Запорожский титано-магниевый комбинат».